UCI AI/ML Seminar Series
Dylan Slack
PhD Student
Department of Computer Science
University of California, Irvine
Exposing Shortcomings and Improving the Reliability of Machine Learning Explanations
For domain experts to adopt machine learning (ML) models in high-stakes settings such as health care and law, they must understand and trust model predictions. As a result, researchers have proposed numerous ways to explain the predictions of complex ML models. However, these approaches suffer from several critical drawbacks, such as vulnerability to adversarial attacks, instability, inconsistency, and lack of guidance about accuracy and correctness. For practitioners to safely use explanations in the real world, it is vital to properly characterize the limitations of current techniques and develop improved explainability methods. This talk will describe the shortcomings of explanations and introduce current research demonstrating how they are vulnerabl
9 views
41
7
5 years ago 01:01:31 10
AI/ML Seminar Series: Stephan Mandt (10/19/2020)
3 years ago 01:01:46 5
AI/ML Seminar Series: Maja Rudolph (2/07/2022)
3 years ago 00:59:35 5
AI/ML Seminar Series: Roy Fox (1/10/2022)
3 years ago 00:55:41 16
AI/ML Seminar Series: Ruiqi Gao (2/14/2022)
3 years ago 00:49:41 9
AI/ML Seminar Series: Dylan Slack (1/31/2022)
1 year ago 01:00:50 0
[I’ML] ML System Design
4 years ago 01:33:54 6
RS School ML Pandas Data Manipulations
6 years ago 01:51:08 3
V-Sense Seminar: Deep Learning
8 years ago 02:21:03 2
3. СУБД в HighLoad. Семинар MySQL и шардинг | Технострим
8 years ago 01:53:08 0
Семинар «Deep Learning в решении задач сентимент анализа» | Технострим
8 years ago 03:00:06 6
4. СУБД в HighLoad. Семинар MongoDB | Технострим
4 years ago 00:57:35 2
AI Seminar 2021: Geoffrey Shmigelsky, “Commercialization & Using AI in Livestock ID and Monitoring“
5 years ago 01:29:44 9
Прикладное машинное обучение. Семинар 5. BERT for text classification
4 years ago 01:19:29 40
4. Машинное обучение ПМИ: преобразование данных
4 years ago 01:04:36 8
“Boring” Problems in Distributed ML feat. Richard Liaw | Stanford MLSys Seminar Episode 28
5 years ago 00:13:22 21
Новости из мира ML | Семинар #1 лаборатории машинного обучения ИТМО
3 years ago 01:09:48 8
22. Машинное обучение ПМИ: интерпретируемый ML
4 years ago 01:25:46 29
6. Машинное обучение ПМИ: что мне спрогнозировал алгоритм и калибровка вероятностей
2 years ago 00:00:00 1
Прогнозирование цен на электроэнергию с помощью ML/AI.
5 years ago 00:06:47 7
Новости из мира ML | Семинар #2 лаборатории машинного обучения ИТМО