Inertial collapse of a single bubble near a solid surface

Inertial collapse of a single bubble near a solid surface Shahaboddin Alahyari Beig, University of Michigan Eric Johnsen, University of Michigan DOI: Cavitation research is essential to a variety of applications ranging from naval hydrodynamics to medicine and energy sciences. Sub-micron-sized cavities can grow to millimeter-sized bubbles, and collapse violently in an inertial fashion. This implosion, which concentrates energy into a small volume, can produce high pressures and temperatures, generate strong shock waves, and even emit visible light. In the vicinity of a neighboring solid the collapse becomes non-spherical, evidenced by the formation of a liquid re-entrant jet directed toward the solid. The impact of the jet upon the distal side of the bubble generates a water-hammer shock, and thus high pressure regions along the solid wall. One of the main consequences of cavitation is structural damage to neighboring objects due to bubble
Back to Top