Trypsin catalyzes the hydrolysis of peptide bonds, breaking down proteins into smaller peptides. The peptide products are then further hydrolyzed into amino acids via other proteases, rendering them available for absorption into the blood stream. Tryptic digestion is a necessary step in protein absorption, as proteins are generally too large to be absorbed through the lining of the small intestine.
Trypsin is produced as the inactive zymogen trypsinogen in the pancreas. When the pancreas is stimulated by cholecystokinin, it is then secreted into the first part of the small intestine (the duodenum) via the pancreatic duct. Once in the small intestine, the enzyme enteropeptidase activates trypsinogen into trypsin by proteolytic cleavage.
Trypsin is a serine protease from the PA clan superfamily, found in the digestive system of many vertebrates, where it hydrolyzes proteins. Trypsin is formed in the small intestine when its proenzyme form, the trypsinogen produced by the pancreas, is activated. Trypsin cuts peptide chains mainly at the carboxyl side of the amino acids lysine or arginine. It is used for numerous biotechnological processes. The process is commonly referred to as trypsin proteolysis or trypsinization, and proteins that have been digested/treated with trypsin are said to have been trypsinized. Trypsin was discovered in 1876 by Wilhelm Kühne and was named from the Ancient Greek word for rubbing since it was first isolated by rubbing the pancreas with glycerin.
#ProteinSequencing #proteins #polypeptide #trypsin #NikolaysGeneticsLessons #protein #aminoAcid #peptide #disulfideBridges #covalentBounding #ionicBounding #hydrophobicInteraction #proteinStructure #proteinSequence #proteinFolding #aminoAcids #Polypeptides #ImidazolRing #Histidine #polypeptideChain #oligopeptide #hydrolysesSynthesis #condensationReaction #condensationSynthesis #peptides #globularProteins #fibrousProteins #Genetics