Применение различных методов оптимизации для моделей суммаризации кода
В стандартном процессе машинного обучения ставится задача поиска глобального минимума функции потерь. При этом ландшафт функции потерь для задач глубокого обучения обычно чрезвычайно сложен, до сих пор неизвестна форма локальных минимумов, их устройство и взаимное расположение. Это приводит к тому, что наиболее популярные на данный момент методы оптимизации (SGD, Adam) могут сойтись в локальный минимум, не являющийся глобальным. К счастью, в последние несколько лет появилось множество подходов, которые модифицируют стандартные SGD и Adam для более качественного обучения моделей и показывают значимое улучшение результатов для исследуемых моделей. Однако, исследователи обычно изучают эффективность предложенных методов на задачах машинного зрения (CIFAR-10, CIFAR-100, ImageNet).
На семинаре мы обсудим принципы работы некоторых из новых методов, а также обобщаемость полученных авторами этих методов результатов на другие задачи глубокого обучения, в частности, на задачу суммаризации кода в имя метода.
Докладчик:
14 views
10
3
3 weeks ago 00:48:11 1
Техномагия - описание системы от Николая Журавлева
4 weeks ago 00:01:31 1
Алматыда трансұлттық ұйымдасқан қылмыстық топ мүшелеріне үкім шықты
4 weeks ago 01:06:12 3
#746 Молекулярный деструктор, принцип работы. Инопланетные технологии переработки отходов. Гравиметр
1 month ago 00:18:43 1
ДОНОРМИЛ при лечении бессонницы. Комментарий врача-сомнолога Романа Бузунова