coursera-unsupervised-learning-recommenders-reinforcement-learning-2022-7
1_unsupervised-learning\
1_welcome-to-the-course\
0:00 1_welcome
2_clustering\
3:21 1_what-is-clustering
7:33 2_k-means-intuition
14:22 3_k-means-algorithm
24:12 4_optimization-objective
35:25 5_initializing-k-means
44:18 6_choosing-the-number-of-clusters
4_anomaly-detection\
52:16 1_finding-unusual-events
1:04:10 2_gaussian-normal-distribution
1:15:01 3_anomaly-detection-algorithm
1:27:09 4_developing-and-evaluating-an-anomaly-detection-system
1:38:47 5_anomaly-detection-vs-supervised-learning
1:46:55 6_choosing-what-features-to-use
2_recommender-systems\
1_collaborative-filtering\
2:01:53 1_making-recommendations
2:07:25 2_using-per-item-features
2:18:47 3_collaborative-filtering-algorithm
2:32:42 4_binary-labels-favs-likes-and-clicks
3_recommender-systems-implementation-detail\
2:41:10 1_mean-normalization
2:49:55 2_tensorflow-implementation-of-collaborative-filtering
3:01:33 3_finding-related-items
5_content-based-filtering\
3:08:06 1_collaborative-filtering-vs-content-based-filtering
3:17:52 2_deep-learning-for-content-based-filtering
3:27:34 3_recommending-from-a-large-catalogue
3:35:27 4_ethical-use-of-recommender-systems
3:46:16 5_tensorflow-implementation-of-content-based-filtering
3_reinforcement-learning\
1_reinforcement-learning-introduction\
3:51:04 1_what-is-reinforcement-learning
3:59:52 2_mars-rover-example
4:06:34 3_the-return-in-reinforcement-learning
4:16:53 4_making-decisions-policies-in-reinforcement-learning
4:19:30 5_review-of-key-concepts
3_state-action-value-function\
4:25:05 1_state-action-value-function-definition
4:35:41 2_state-action-value-function-example
4:41:03 3_bellman-equations
4:53:56 4_random-stochastic-environment-optional
5_continuous-state-spaces\
5:02:21 1_example-of-continuous-state-space-applications
5:08:45 2_lunar-lander
5:14:39 3_learning-the-state-value-function
5:31:30 4_algorithm-refinement-improved-neural-network-architecture
5:34:31 5_algorithm-refinement-greedy-policy
5:43:30 6_algorithm-refinement-mini-batch-and-soft-updates-optional
5:55:13 7_the-state-of-reinforcement-learning
7_summary-and-thank-you\
5:58:07 1_summary-and-thank-you