1. Course Overview:
1. Course Overview 00:00:00
2. Introducing Image Captioning:
1. Overview 00:01:49
2. What Is Image Captioning and Why Is It Important 00:04:48
3. Introducing the Business Case Study for Image-captioning 00:08:14
4. Proposed Solutions for Image Captioning Case Study 00:10:33
5. Summary 00:16:47
3. Preparing Data for Image Captioning Models:
1. Module and Project Overview 00:17:48
2. Demo - Load and Explore the Dataset 00:25:28
3. Demo - Pre-processing the Images Data 00:35:50
4. Demo - Pre-processing the Captions Data 00:43:34
5. Demo - Prepare Training Data Using Pre-processed Data 00:50:06
6. Summary 00:53:57
4. Building the Model for Image Captioning Using Tensorflow:
1. Overview 00:54:48
2. Demo - Build the Attention Model for Image-captioning Using TensorFlow 00:55:59
3. Demo - Implement CNN Encoder in TensorFlow 01:01:19
4. Demo - Implement RNN Decoder with Attention & Sentence Generator 01:02:36
5. Demo - Define the Loss Function and Model Checkpoints 01:05:00
6. Demo - Perform Model Training 01:07:47
7. Demo - Making Predictions out of the Trained Model 01:11:13
8. Summary 01:12:49
5. Evaluating Deep Learning Models for Image Captioning:
1. Overview 01:13:38
2. Meshed Memory Transformer for Image Captioning 01:14:37
3. Evaluation Metrics for Image Captioning 01:18:21
4. Bottom-up and Top-down Attention for Image Captioning 01:28:37
5. Summary 01:31:12
3 views
1524
440
5 months ago 00:17:53 34
ИСПЫТАНИЯ УСИЛЕННОГО СЦЕПЛЕНИЯ VALEO НА ПОЛИГОНЕ ЗАВОДА ВАЗ. ПРОВЕРКА В ГОРУ В ПЕСКЕ, БУКСИР ДАСТЕРА
10 months ago 00:29:18 1
Регулятор температуры для паяльника на arduino. How to make a temperature controller for a iron.
1 year ago 00:13:07 1
Сокеты в программировании. Пишем свой сервер и клиент.
1 year ago 00:12:23 1
B3.4 Implementing Ensemble Learning Using Model Stacking
1 year ago 00:31:17 3
B3.3 Implementing Ensemble Learning Using Boosting Methods
1 year ago 00:41:59 4
B3.2 Implementing Ensemble Learning Using Averaging Methods