EyeMU Interactions: Gaze + IMU Gestures on Mobile Devices
As smartphone screens have grown in size, single-handed use has become more cumbersome. Interactive targets that are easily seen can be hard to reach, particularly notifications and upper menu bar items. Users must either adjust their grip to reach distant targets, or use their other hand. In this research, we show how gaze estimation using a phone’s user-facing camera can be paired with IMU-tracked motion gestures to enable a new, intuitive, and rapid interaction technique on handheld phones. We describe our proof of-concept implementation and gesture set, built on state-of-the-art techniques and capable of self-contained execution on a smartphone. In our user study, we found a mean euclidean gaze error of 1.7 cm and a seven class motion gesture classification accuracy of 97.3%.
Citation:
Andy Kong, Karan Ahuja, Mayank Goel, and Chris Harrison. 2021. EyeMU Interactions: Gaze IMU Gestures on Mobile Devices. In Proceedings of the 2021 International Conference on Multimodal Interaction (ICMI ’21). Assoc
1 view
139
34
3 years ago 00:02:24 1
EyeMU Interactions: Gaze + IMU Gestures on Mobile Devices