#60 Geometric Deep Learning Blueprint (Special Edition)
The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods. Many high-dimensional learning tasks previously thought to be beyond reach -- such as computer vision, playing Go, or protein folding -- are in fact tractable given enough computational horsepower. Remarkably, the essence of deep learning is built from two simple algorithmic principles: first, the notion of representation or feature learning and second, learning by local gradient-descent type methods, typically implemented as backpropagation.
While learning generic functions in high dimensions is a cursed estimation problem, most tasks of interest are not uniform and have strong repeating patterns as a result of the low-dimensionality and structure of the physical world.
Geometric Deep Learning unifies a broad class of ML problems from the perspectives of symmetry and invariance. These principles not only underlie the breakthrough performance of convolutional neural networks
15 views
14
12
3 months ago 00:15:00 1
Решение задач / Параллелограмм / Свойства параллелограмма / 8 класс / Геометрия
3 months ago 00:41:16 1
Теория / Параллелограмм / Свойства параллелограмма / 8 класс Геометрия
3 months ago 02:31:18 1
Геометрия с Нуля (первая часть)
3 months ago 00:02:18 1
Олимпиадная задача по геометрии. Ты сможешь!
4 months ago 00:24:03 1
Самостоятельная работа / 8 класс / Геометрия
4 months ago 02:37:28 1
✓ Аналитическая геометрия. Начало | Для студентов и школьников | #ТрушинLive #046 | Борис Трушин
4 months ago 01:12:42 1
Математическая Вертикаль | МЕГА РАЗБОР | 1.1 - | Геометрия 7 класс | Волчкевич | ГДЗ Решение