Методы решения ОДУ, основанные на чебышевской интерполяции, 2024-01-31

Методы решения ОДУ, основанные на чебышевской интерполяции, интегрирующих множителях, матрицах спектрального дифференцирования и интегрирования Ловецкий К. П. Кафедра математического моделирования и искусственного интеллекта, РУДН В докладе рассматривается метод чебышевской полиномиальной интерполяции в базисе из полиномов Чебышева 1-го рода. Основное внимание уделяется методу интерполяции на сетке Гаусса-Лобатто. Использование дискретной ортогональности чебышевских полиномов позволяет вычислять коэффициенты спектрального разложения с минимальными затратами, сводя процедуру решения к системе линейных уравнений с диагональной положительно определенной матрицей. Такой метод почти оптимальной аппроксимации совместно с алгоритмом интегрирующих множителей и использованием матриц спектрального интегрирования привел к созданию многоэтапных метода решения различных задач. Приводятся примеры решения «задачи Коши» с заданием начальных/конечных или промежуточных условий для ОДУ первого и второго порядков, методы вычисления определенных интегралов, метод интегрирования быстроосциллирующих функций. Methods for solving ODEs based on Chebyshev interpolation, integrating factors, spectral differentiation and integration matrices K. H. Lovetskiy Department of Mathematical Modeling and Artificial Intelligence, RUDN University The report discusses the method of Chebyshev polynomial interpolation in a basis of Chebyshev polynomials of the 1st kind. The focus is on the interpolation method on the Gauss-Lobatto grid. The use of discrete orthogonality of Chebyshev polynomials allows one to calculate the coefficients of spectral decomposition with minimal costs, reducing the solution procedure to a system of linear equations with a diagonal positive definite matrix. This approach of almost optimal approximation, together with the method of integrating factors and the use of spectral integration matrices, led to the creation of multi-stage methods for solving various problems. Examples are given of solving the “Cauchy problem” with setting initial/final or intermediate conditions for first- and second-order ODEs, methods for calculating definite integrals, and a method for integrating rapidly oscillating functions.
Back to Top