Integrating Living Organisms in Devices to Implement Care-based Interactions

Video of “Integrating Living Organisms in Devices to Implement Care-based Interactions“ from ACM UIST 2022. This work was published at ACM UIST 2022 as a full paper, and by Jasmine Lu and Pedro Lopes at the University of Chicago’s Human Computer Integration Lab. Abstract: Researchers have been exploring how incorporating care-based interactions can change the user’s attitude & relationship towards an interactive device. This is typically achieved through virtual care where users care for digital entities. In this paper, we explore this concept further by investigating how physical care for a living organism, embedded as a functional component of an interactive device, also changes user-device relationships. Living organisms differ as they require an environment conducive to life, which in our concept, the user is responsible for providing by caring for the organism (e.g., feeding it). We instantiated our concept by engineering a smartwatch that includes a slime mold that physically conducts power to a heart rate sensor inside the device, acting as a living wire. In this smartwatch, the availability of heart-rate sensing depends on the health of the slime mold—with the user’s care, the slime mold becomes conductive and enables the sensor; conversely, without care, the slime mold dries and disables the sensor (resuming care resuscitates the slime mold). To explore how our living device was perceived by users, we conducted a study where participants wore our slime mold-integrated smartwatch for 9-14 days. We found that participants felt a sense of responsibility, developed a reciprocal relationship, and experienced the organism’s growth as a source of affect. Finally, to allow engineers and designers to expand on our work, we abstract our findings into a set of technical and design recommendations when engineering an interactive device that incorporates this type of care-based relationship. Find out more at: #integrating-living-organisms
Back to Top