Ultra Deep Isochronic Tones 95 Hz | High Gamma Brain Waves

This recording’s inducing the high gamma waves (95 Hz) to Your brain ☼ 95 Hz is also one of the most effective Royal Raymond Rife’s healing frequencies. So this frequency has an effect not only on Your brain, but on Your whole body too ☼ We prepared the 95 Hz isochronic tones, that should be very pleasant to Your ears. They resemble lions purr☺ Audio and video created by Mandaloscope™. Thank You for visiting us! ------- A gamma wave is a pattern of neural oscillation in humans with a frequency between 25 and 100 Hz, though 40 Hz is typical. Gamma waves may be implicated in creating the unity of conscious perception (the binding problem). Experiments on Tibetan Buddhist monks have shown a correlation between transcendental mental states and gamma waves. A suggested explanation is based on the fact that the gamma is intrinsically localized. Neuroscientist Sean O’Nuallain suggests that this very existence of synchronized gamma indicates that something akin to a singularity - or, to be more prosaic, a conscious experience - is occurring. This work adduces experimental and simulated data to show that what meditation masters have in common is the ability to put the brain into a state in which it is maximally sensitive. As mentioned above, gamma waves have been observed in Tibetan Buddhist monks. A 2004 study took eight long-term Tibetan Buddhist practitioners of meditation and, using electrodes, monitored the patterns of electrical activity produced by their brains as they meditated. The researchers compared the brain activity of the monks to a group of novice meditators (the study had these subjects meditate an hour a day for one week prior to empirical observation). In a normal meditative state, both groups were shown to have similar brain activity. However, when the monks were told to generate an objective feeling of compassion during meditation, their brain activity began to fire in a rhythmic, coherent manner, suggesting neuronal structures were firing in harmony. This was observed at a frequency of 25–40 Hz, the rhythm of gamma waves. These gamma-band oscillations in the monk’s brain signals were the largest seen in humans (apart from those in states such as seizures). Conversely, these gamma-band oscillations were scant in novice meditators. Though, a number of rhythmic signals did appear to strengthen in beginner meditators with further experience in the exercise, implying that the aptitude for one to produce gamma-band rhythm is trainable. Such evidence and research in gamma-band oscillations may explain the heightened sense of consciousness, bliss, and intellectual acuity subsequent to meditation. Notably, meditation is known to have a number of health benefits: stress reduction, mood elevation, and increased life expectancy of the mind and its cognitive functions. The current Dalai Lama meditates for four hours each morning, and he says that it is hard work. He elaborates that if neuroscience can propose a way in which we may reap the psychological and biological rewards of meditation without this practice, he would be an enthusiastic volunteer. A 2009 study published in Nature successfully induced gamma waves in mouse brains. Researchers performed this study using optogenetics (the method of combining genetic engineering with light to manipulate the activity of individual nerve cells). The protein channelrhodopsin-2 (ChR2), which sensitizes cells to light, was genetically engineered into these mice, specifically to be expressed in a target-group of interneurons. These fast-spiking (FS) interneurons, known for high electrical activity, were then activated with an optical fiber and laser—the second step in optogenetics. In this way, the cell activity of these interneurons was manipulated in the frequency range of 8–200 Hz. The study produced empirical evidence of gamma wave induction in the approximate interval of 25–100 Hz. The gamma waves were most apparent at a frequency of 40 Hz; this indicates that the gamma waves evoked by FS manipulation are a resonating brain circuit property. This is the first study in which it has been shown that a brain state can be induced through the activation of a specific group of cells. Pushed by the need of understanding how gamma might affect disease pathogenesis, a recent study published in Nature demonstrates that entraining oscillations and spiking at 40 Hz in the hippocampus of a well-established model of Alzheimer’s disease (5XFAD mice) reduces Aβ peptides and at the same time activates a microglia response. Gamma waves are observed as neural synchrony from visual cues in both conscious and subliminal stimuli. This research also sheds light on how neural synchrony may explain stochastic resonance in the nervous system. Gamma waves are also implicated during rapid eye movement sleep and anesthesia, which involves visualizations. Isochronic tones are regular beats of a single tone that are used in the process called brainwave entrainment.
Back to Top