Andrej Karpathy Building makemore Part 4: Becoming a Backprop Ninja
🎯 Загружено автоматически через бота:
🚫 Оригинал видео:
📺 Данное видео принадлежит каналу «Andrej Karpathy» (@AndrejKarpathy). Оно представлено в нашем сообществе исключительно в информационных, научных, образовательных или культурных целях. Наше сообщество не утверждает никаких прав на данное видео. Пожалуйста, поддержите автора, посетив его оригинальный канал.
✉️ Если у вас есть претензии к авторским правам на данное видео, пожалуйста, свяжитесь с нами по почте support@, и мы немедленно удалим его.
📃 Оригинальное описание:
We take the 2-layer MLP (with BatchNorm) from the previous video and backpropagate through it manually without using PyTorch autograd’s (): through the cross entropy loss, 2nd linear layer, tanh, batchnorm, 1st linear layer, and the embedding table. Along the way, we get a strong intuitive understanding about how gradients flow backwards through the compute graph and on the level of efficient Tensors, not just individual scalars like in micrograd. This helps build competence and intuition around how neural nets are optimized and sets you up to more confidently innovate on and debug modern neural networks.
!!!!!!!!!!!!
I recommend you work through the exercise yourself but work with it in tandem and whenever you are stuck unpause the video and see me give away the answer. This video is not super intended to be simply watched. The exercise is here:
!!!!!!!!!!!!
Links:
makemore on github:
jupyter notebook I built in this video:
collab notebook:
my website:
my twitter:
our Discord channel:
Supplementary links:
Yes you should understand backprop:
BatchNorm paper:
Bessel’s Correction:
Bengio et al. 2003 MLP LM
Chapters:
intro: why you should care & fun history
starter code
exercise 1: backproping the atomic compute graph
brief digression: bessel’s correction in batchnorm
exercise 2: cross entropy loss backward pass
exercise 3: batch norm layer backward pass
exercise 4: putting it all together
outro
2 views
0
0
2 months ago 04:01:25 11
[Andrej Karpathy] Let’s reproduce GPT-2 (124M)
2 months ago 00:27:13 2
But what is a GPT? Visual intro to transformers | Chapter 5, Deep Learning
2 months ago 00:44:17 1
No Priors Ep. 80 | With Andrej Karpathy from OpenAI and Tesla
2 months ago 00:18:11 53
НОВОСТИ ИИ: Подписка на ChatGPT за 2000$
3 months ago 00:26:10 1
Attention in transformers, visually explained | Chapter 6, Deep Learning
3 months ago 00:06:53 1
Elon Musk says losers use LiDAR. [Explanation video]
4 months ago 00:47:27 1
Projeto Secreto da OpenAI: Descubra as Últimas Inovações da IA e Fique Super Atualizado no IA News#6
4 months ago 00:07:41 1
Educação 100% com IA, FBI invade celular, Hype das IA no fim, e muito mais
6 months ago 00:40:08 1
The Most Important Algorithm in Machine Learning
7 months ago 00:08:29 1
CATL’s sodium hybrid battery will be 30% cheaper & revolutionise the world
7 months ago 00:08:55 1
Tesla reveals timelline for massive electric Semi production at $ factory
8 months ago 00:26:53 1
Vedal & Neuro Build A Language Model From Scratch
8 months ago 00:03:19 2
How To Study Hard - Richard Feynman
9 months ago 00:16:39 1
Phi-1: A ’Textbook’ Model
10 months ago 00:20:13 1
GPT-5: Everything You Need to Know So Far
12 months ago 00:14:07 1
“Что в имени тебе моем?“ Учимся генерировать новые имена у звездного разработчика Tesla и OpenAI.
12 months ago 00:59:48 21
Введение в большие языковые модели от Andrej Karpathy
1 year ago 00:03:51 1
ČENDEŠ - Karpaty, Karpaty [OFFICIAL 2017 4K]
1 year ago 00:30:09 1
Andrej Karpathy - AI for Full-Self Driving at Tesla
1 year ago 01:03:42 3
[SafeCode Live] ML в AppSec
1 year ago 00:05:48 3
Advice for machine learning beginners | Andrej Karpathy and Lex Fridman
1 year ago 03:28:47 25
Andrej Karpathy Tesla AI, Self-Driving, Optimus, Aliens, and AGI Lex Fridman Podcast #333
1 year ago 03:08:46 1
George Hotz: Tiny Corp, Twitter, AI Safety, Self-Driving, GPT, AGI & God | Lex Fridman Podcast #387
1 year ago 00:07:56 11
[Lex Clips] How to hack the simulation | Andrej Karpathy and Lex Fridman