How to find allelic and genotypic frequency

PTC The Genetics of Bitter Taste In 1931, a chemist named Arthur Fox was pouring some powdered PTC into a bottle. When some of the powder accidentally blew into the air, a colleague standing nearby complained that the dust tasted bitter. Fox tasted nothing at all. Curious how they could be tasting the chemical differently, they tasted it again. The results were the same. Fox had his friends and family try the chemical then describe how it tasted. Some people tasted nothing. Some found it intensely bitter, and still others thought it tasted only slightly bitter. Soon after its discovery, geneticists determined that there is an inherited component that influences how we taste PTC. Today we know that the ability to taste PTC (or not) is conveyed by a single gene that codes for a taste receptor on the tongue. The PTC gene, TAS2R38, was discovered in 2003. There are two common forms (or alleles) of the PTC gene, and at least five rare forms. One of the common forms is a tasting allele, and the other is a non-tasting allele. Each allele codes for a bitter taste receptor protein with a slightly different shape. The shape of the receptor protein determines how strongly it can bind to PTC. Since all people have two copies of every gene, combinations of the bitter taste gene variants determine whether someone finds PTC intensely bitter, somewhat bitter, or without taste at all. Although PTC is not found in nature, the ability to taste it correlates strongly with the ability to taste other bitter substances that do occur naturally, many of which are toxins. Plants produce a variety of toxic compounds in order to protect themselves from being eaten. The ability to discern bitter tastes evolved as a mechanism to prevent early humans from eating poisonous plants. Humans have about 30 genes that code for bitter taste receptors. Each receptor can interact with several compounds, allowing people to taste a wide variety of bitter substances. If the ability to taste bitter compounds conveys a selective advantage, then shouldn’t non-tasters have died off long ago? Why do so many people still carry the non-tasting PTC variant? Some scientists believe that non-tasters of PTC can taste another bitter compound. This scenario would give the greatest selective advantage to heterozygotes, or people who carry one tasting allele and one non-tasting allele. #genotype #Anaphase #enzyme #protein #Cancer #proteins #GeneticTesting #phenotype #centromeres #AllelicFrequencies #tRNA #genetic #rRNA #Heterozygous #Isochromosome #GeneStructure #geneticDrift #homozygous #chromosome #GeneticsLecture #genomics #genetics #nucleicAcids #Genetics101 #dnaMolecule #geneExpression #gregorMendel #RNA #alleles #molecularBiology
Back to Top