MIT Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018
Instructor: Gilbert Strang
View the complete course:
YouTube Playlist:
This lecture focuses on the construction of the learning function F, which is optimized by stochastic gradient descent and applied to the training data to minimize the loss. Professor Strang also begins his review of distance matrices.
License: Creative Commons BY-NC-SA
More information at
More courses at
1 view
291
83
2 months ago 08:37:35 1
Elon Musk: Neuralink and the Future of Humanity | Lex Fridman Podcast #438
2 months ago 01:41:39 1
Optimal Protocols for Studying & Learning
2 months ago 00:08:09 1
КАК ПОРНОГРАФИЯ МЕНЯЕТ МОЗГ | Удивительный факт | Просвещенный
2 months ago 00:17:35 1
IREX 2023 – Крупнейшая выставка роботов в Японии / Роботы и технологии будущего на выставке в Японии
2 months ago 03:42:50 1
Dr. Paul Conti: How to Understand & Assess Your Mental Health | Huberman Lab Guest Series
2 months ago 01:30:56 4
The Exercise Neuroscientist: NEW RESEARCH, The Shocking Link Between Exercise And Dementia!
2 months ago 01:16:31 1
Где в музыке математика? Анна Виленская о секрете идеальной гармонии звуков
2 months ago 00:44:13 1
Ошибка самовосприятия: почему нам нравится, как мы выглядим, а другим нет? ОТДЕЛ МОДЫ
2 months ago 01:00:00 1
ТРЕК С НУЛЯ Archetype Gojira’s Octaver вместо 8 струн
2 months ago 02:26:59 1
Dr. Victor Carrión: How to Heal From Post-Traumatic Stress Disorder (PTSD)