Профильный ЕГЭ 2023 математика. Задача 4. Сложная теория вероятностей

Чтобы забронировать за собой место на курсах по подготовке к ЕГЭ в нашей летней школе, или на годовых курсах ЕГЭ 2024, скорее пиши «ЛЕТО» по этой ссылке: Lomonosov School – профессиональная онлайн-школа подготовки к ЕГЭ, ОГЭ, ДВИ и ВСОШ от преподавателей из МГУ имени М.В. Ломоносова. Несколько фактов о нас: ✨успешно готовим к экзаменам с 2018 года ✨более выпускников ✨248 стобалльников ✨каждый третий ученик сдает на 90 ✨все преподаватели с оконченным высшим образованием Мы в других социальных сетях: 🔹VK: 🔹Telegram: Наш официальный сайт: Я в других социальных сетях: Мой Telegram по подготовке к ЕГЭ: Группа VK: Tik-Tok: @hitman_math Мой Instagram: Задача 1. Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже 36,6C, равна 0,89. Найдите вероятность того, что в случайный момент времени у здорового человека температура тела окажется 36,6C или выше. Задача 2. На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Окружность», равна 0,17. Вероятность того, что это вопрос по теме «Треугольник», равна 0,32. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем. Задача 3. Если Крабов играет белыми фигурами, то он выигрывает у Кальмарова с вероятностью 0,5. Если Крабов играет черными, то он выигрывает у Кальмарова с вероятностью 0,2. Крабов и Кальмаров играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что Крабов выиграет оба раза. Задача 4. Если Крабов играет белыми фигурами, то он выигрывает у Кальмарова с вероятностью 0,5. Если Крабов играет черными, то он выигрывает у Кальмарова с вероятностью 0,2. Крабов и Кальмаров играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что Крабов выиграет ровно одну партию. Задача 5. Если Крабов играет белыми фигурами, то он выигрывает у Кальмарова с вероятностью 0,5. Если Крабов играет черными, то он выигрывает у Кальмарова с вероятностью 0,2. Крабов и Кальмаров играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что Крабов выиграет не менее одной партии. Задача 6. Если Крабов играет белыми фигурами, то он выигрывает у Кальмарова с вероятностью 0,5. Если Крабов играет черными, то он выигрывает у Кальмарова с вероятностью 0,2. Крабов и Кальмаров играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что Крабов не выиграет ни разу. Задача 7. Биатлонист три раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые два раза попал в мишени, а последним выстрелом промахнулся. Задача 8. Биатлонист три раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист два раза попал в мишени и один раз промахнулся. Задача 12. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,1. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах. Тайм-коды: 0:00 Начинаем интенсив 0:20 Для кого интенсив 0:47 Кто я такой 1:49 Как устроен интенсив 3:48 Зачем я провожу интенсив 4:40 Почему именно задание 4 5:00 Программа интенсива 5:57 Что делать, если есть проблемы в других заданиях 9:02 Как вы себя чувствуете в сегодняшней теме 10:30 Что такое случайное событие 12:25 Классическая теория вероятностей 14:01 Куда постоянно пропадают проценты 15:22 Ключевые слова, события и теоремы 16:22 Противоположные события 17:15 Произведение событий 17:52 Независимые события 18:40 Сумма событий 19:24 Несовместные события 20:08 Наводим красоту 20:50 Конкретный пример 21:26 Совместные события 23:17 Теория, практика и обратная связь 25:40 Задача 1 27:50 Задача 2 29:22 Замечание по оформлению на ЕГЭ 29:48 Задача 3 32:55 Как работают теоремы на практике 34:00 Задача 4 35:20 Научиться читать, говорить и писать 36:16 Максимально подробное решение 38:58 Эллочка Людоедка нам бы позавидовала Smile 40:15 Как до этого можно догадаться 42:12 Вспоминаю историю шахмат 42:31 Задача 5 46:20 Задача 6 48:28 Анализируем ответы и проникаемся 51:41 Задача 7 54:40 Задача 8 59:05 В чём разница между задачами 7 и 8 1:01:12 Задача 12 1:07:10 Я забыл про мастер класс #тервер #математика #профильныйегэ #теорияВероятностей
Back to Top